Mark schemes Q1. [AO1 = 1] **D** – Sensory neuron [1] Q2. [AO1 = 4] Award 1 mark for each of the following: | | Component | | |---|--|--| | Α | Cell body/soma | | | В | Dendrites | | | С | Node of Ranvier/axon | | | D | Terminal button/presynaptic terminal/axon terminal | | [4] Q3. [AO1 = 4] | Level | Marks | Description | |-------|-------|--| | 2 | 3-4 | There is a clear description of two or more functions of the peripheral nervous system with some accurate detail. The answer is generally coherent with effective use of appropriate terminology. | | 1 | 1-2 | There is limited or partial description of two or more functions of the peripheral nervous system. The answer lacks coherence and use of appropriate terminology. OR one function of the peripheral nervous system at Level 1/2. | | | 0 | No relevant content. | # **Possible content:** - the peripheral nervous system (consists of the autonomic nervous system and somatic nervous system and) is responsible for transmitting messages to and from the central nervous system - the somatic nervous system is responsible for transmitting information from sense organs to the central nervous system and transmitting information from the central nervous system to effectors such as muscles - the autonomic nervous system (consists of the sympathetic nervous system and the parasympathetic nervous system and) is responsible for - transmitting information to and from internal bodily organs - the sympathetic nervous system works alongside the endocrine system to bring about physiological arousal in the fight or flight response - the parasympathetic nervous system works alongside the endocrine system to return the body to its resting state in the rest and digest response. [4] # Q4. # [AO1 = 4] | Level | Marks | Description | |-------|-------|---| | 2 | 3-4 | Explanation of the process of synaptic transmission is detailed, clear and mostly accurate with use of appropriate scientific terminology. | | 1 | 1-2 | Explanation of the process of synaptic transmission is incomplete/muddled. Scientific terminology is either absent or inappropriately used. | | | 0 | No relevant content. | #### Possible content: - electrical impulses (action potentials) reach the presynaptic terminal - electrical impulses (action potentials) trigger release of neurotransmitters (or named example) from synapse vesicles - neurotransmitters diffuse across the synaptic cleft - neurotransmitters bind to receptors on the postsynaptic membrane. Credit other relevant material (eg; labelled diagram – direction of transmission should be made clear; excitation/inhibition). [4] ### Q5. # [AO1 = 6] | Level | Marks | Description | |-------|-------|---| | 3 | 5-6 | Knowledge of the divisions of the nervous system is accurate and detailed. The answer is clear and coherent with effective use of terminology. | | 2 | 3-4 | Knowledge of the divisions of the nervous system is evident but there may be some detail missing. The answer lacks clarity and/or accuracy in places. Use of terminology is inappropriate on occasions. | | 1 | 1-2 | Knowledge of the divisions of the nervous system is limited or muddled. Use of terminology is either absent or inappropriate. | | | 0 | No relevant content. | #### Possible content: - the nervous system is divided into the central and peripheral nervous systems - the CNS comprises the brain and spinal cord - the peripheral nervous system is further divided into the somatic nervous system and the autonomic nervous system (ANS) - the somatic nervous system consists of sensory and motor neurons to carry sensory and motor information to and from the CNS and also enables reflex actions - the ANS acts largely unconsciously/involuntary - the ANS is divided into the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS) - the SNS prepares us for flight or fight - the PNS balances the sympathetic nervous system providing 'rest and digest' functions. **Note**: content presented in diagrams can be credited. Credit other relevant material. [6] ### Q6. ### [AO1 = 6] | Level | Mark | Description | |-------|------|---| | 3 | 5-6 | Description is clear, accurate and detailed. Specialist terminology is used effectively. | | 2 | 3-4 | Description is mostly clear but lacks detail in places. There is some appropriate use of specialist terminology. OR only structure/only function of a neuron at level 3. | | 1 | 1-2 | Description is limited/muddled. The answer lacks clarity and accuracy. Specialist terminology is either absent or inappropriately used. OR only structure/only function of a neuron at level 1/2. | | | 0 | No relevant content. | ### Possible content: - Neurons enable communication within the nervous system - the cell body (soma) contains the genetic material - branch-like dendrites extend from the cell body (often with dendritic spines) - dendrites carry functional information towards the cell body - dendrites can receive information from other neurons - axons carry messages away from the cell body - axons can be myelinated to increase speed of nerve transmission (saltatory conduction between nodes of Ranvier) - terminal boutons are at the end of axons, these make synaptic connections with other cells - axon terminals contain neurotransmitters. Credit other relevant material. **Note**: credit references to structure and function of specific neurons (sensory, motor and relay). Note: information presented in a diagram can be credited. [6] ### Q7. (a) [AO1 = 1] Autonomic nervous system. 1 (b) [AO1 = 3] **1 mark** for identifying the somatic nervous system. #### **PLUS** **2 marks** for a clear and coherent explanation of the action of the somatic nervous system. **1 mark** for a muddled or limited explanation of the action of the somatic nervous system. #### **Possible content:** - transmits sensory information from the body/sense receptors to the brain/central nervous system - transmits information from the brain (via the spinal cord) to muscles/effectors to produce (voluntary) movements - the somatic nervous system integrates the brain with the outside world - some movements are involuntary such as in the reflex arc. Credit other relevant information. 3 [4] # Q8. # [AO2 = 4] | Level | Mark | Description | |-------|------|--| | 2 | 3-4 | The explanation of how Zapurpain might affect the process of synaptic transmission through inhibition is clear and coherent with effective use of terminology. | | 1 | 1-2 | The explanation of how Zapurpain might affect the process of synaptic transmission through inhibition is partial/limited/muddled. Terminology may be absent or inappropriately used. | | | 0 | No relevant content. | #### Possible content: - Zapurpain mimics the effect of inhibitory neurotransmitters, stimulation of postsynaptic receptors by an inhibitory neurotransmitter result in inhibition (hyperpolarisation) of the postsynaptic membrane - when an inhibitory neurotransmitter binds to the post-synaptic receptors it makes the post-synaptic cell less likely to fire (IPSP) - Summation if inhibitory inputs are higher than excitatory they can cancel out excitation and inhibit an action potential occurring/Zapurpain would decrease the overall activity - Zapurpain would make the post-synaptic cell less likely to fire - reducing brain activity may lead to reduced pain. Credit other relevant material, eg information embedded in a labelled diagram – direction of transmission should be made clear.